Performance evaluation of black hole algorithm, gravitational search algorithm and particle swarm optimization
نویسندگان
چکیده
منابع مشابه
Performance Evaluation of OLSR Using Swarm Intelligence and Hybrid Particle Swarm Optimization Using Gravitational Search Algorithm
The aim of this research is to evaluate the performance of OLSR using swarm intelligence and HPSO with Gravitational search algorithm to lower the jitter time, data drop and end to end delay and improve the network throughput. Simulation was carried out for multimedia traffic and video streamed network traffic using OPNET Simulator. Routing is exchanging of information from one host to another ...
متن کاملsolving flexible job-shop scheduling problem using hybrid algorithm based on gravitational search algorithm and particle swarm optimization
job shop scheduling problem has significant importance in many researchingfields such as production management and programming and also combinedoptimizing. job shop scheduling problem includes two sub-problems: machineassignment and sequence operation performing. in this paper combination ofparticle swarm optimization algorithm (pso) and gravitational search algorithm(gsa) have been presented f...
متن کاملapplication of new hybrid particle swarm optimization and gravitational search algorithm for non convex economic load dispatch problem
the gravitational search algorithm (gsa) is a novel optimization methodbased on the law of gravity and mass interactions. it has good ability to search forthe global optimum, but its searching speed is really slow in the last iterations. sothe hybridization of particle swarm optimization (pso) and gsa can resolve theaforementioned problem. in this paper, a modified pso, which the movement ofpar...
متن کاملTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
The Gravitational Search Algorithm (GSA) is a novel heuristic optimization method based on the law of gravity and mass interactions. It has been proven that this algorithm has good ability to search for the global optimum, but it suffers from slow searching speed in the last iterations. This work proposes a hybrid of Particle Swarm Optimization (PSO) and GSA to resolve the aforementioned proble...
متن کاملTraining Wavelet Neural Networks Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm for System Identification
ystem identification is mainly the process of improving a mathematical modeling of a physical system using experimental data. In this paper, a new hybrid wavelet neural network is proposed for the system identification purposes. The Gravitational Search Algorithm (GSA) is a new evolutionary algorithm which recently introduced and has a good performance in different optimization problems. The GS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaysian Journal of Fundamental and Applied Sciences
سال: 2015
ISSN: 2289-599X,2289-5981
DOI: 10.11113/mjfas.v11n1.342